Электроника без питания

Разработана технология ориентации спинов в перспективном носителе информации — полупроводниковом кремнии

Перспективные конкуренты электронных носителей информации — на порядки более компактные и менее энергозатратные устройства, созданные по технологии спинтроники, — сделали большой шаг вперед. Ученые научились управлять спином электронов в самом распространенном полупроводнике — кремнии.

Эра энергетически затратной и относительно массивной электроники заканчивается. На смену ей придет спинтроника — технология хранения и обработки данных, которая освободит носители информации от энергетической зависимости и сделает их на порядки более компактными.

В отличие от электронных устройств, где кодирование информации производится с помощью управляемого изменения заряда, в спинтронике задействована возможность хранить и передавать информацию с помощью управляемой ориентации спина – внутреннего углового момента импульса электрона, одной из его квантовых характеристик.

В последнем номере журнала Nature рассказывается об успешном эксперименте профессора Рона Янсена из Нидерландов и его коллег, представляющем новый шаг в развитии спинтроники. С помощью туннелирования между двумя слоями ферромагнетика через нанометровый слой оксида алюминия (Al2O3) ученые ввели поляризованные электроны в кремниевый элемент, причем им удалось добиться стабильной поляризации спинов большей части электронов при комнатной температуре.

«Управлять» спином не так просто. В магнитных материалах спин электронов меняется вполне охотно, но в полупроводниках, которые можно использовать в реальной практике, он более капризен. Поэтому главная задача для исследователей, работающих над созданием спинтронных устройств, — суметь перенести упорядоченность спинов из магнитных материалов в полупроводниковые.

Ранее успешные эксперименты такого рода проводились, но они были едва ли применимы в широкой практике. Для успеха требовались либо экстремально низкие температуры, либо использование довольно экзотических проводников (например арсенида галлия GaAs, который впятеро дороже кремния, «капризнее» его и, возможно, токсичен).

В этом смысле новый эксперимент уникален: в нем используется самый распространенный полупроводник (кремний) в самых обычных условиях (при комнатной температуре и нормальной давлении), что делает методику применимой не только в лабораторной практике, но и в промышленном масштабе.



Принципиальная схема устройства, передающего магнитную информацию с ферромагнетика на полупроводник//R. Jansen

Принципиальная схема устройства, передающего магнитную информацию с ферромагнетика на полупроводник//R. Jansen

В качестве ферромагнитного источника электронов использовался никель-железный сплав, используемый в считывающей головке жестких дисков. Между магнитом и пластиной кремния помещался ультратонкий (всего 1 нм) слой оксида алюминия. Обычно Al2O3 ведет себя как диэлектрик, однако под действием электрического поля часть электронов туннелируют через него из магнитного материала в кремний. Оксидная пленка работает как сито, пропуская электроны с ориентированным спином (поляризованные) лучше, чем прочие. Так создается общее преимущество электронов с ориентированным спином в полупроводнике.

Ключевым в данном эксперименте является использование тончайшего монослоя (слоя толщиной в один атом) оксида алюминия. В предыдущих экспериментах использовались более толстые слои, которые задерживали поток электронов с ориентированным спином. Удачным «ситом» при комнатной температуре оказался именно оксидный монослой.

Простота и эффективность этой методики делает ее новым стандартом для исследователей в области спинтроники, хотя до практического применения ее еще предстоит пройти долгий путь. Для кодировки информации в кремниевом носителе спины электронов нужно научиться искусственно разворачивать. Однако «строительные блоки» для создания такого носителя информации теперь созданы.

Что ж, у спинтроники есть достаточные стимулы к развитию: возможности электронных носителей информации небезграничны, а требования к объемам хранения информации и размерам носителей все время растут. Уменьшение размера чипа делает его производство более сложным и дорогим, а обработка возросшего количества информации требует больших скоростей работы. Увеличение скорости влечет за собой экспоненциальный рост потребления энергии для перемещения электронов в устройстве. Возможно, скоро электронные устройства с необходимым размером памяти станут слишком прожорливыми и дорогими для использования.