На сайте используются cookies. Продолжая использовать сайт, вы принимаете условия
Ok
1 Подписывайтесь на Газету.Ru в MAX Все ключевые события — в нашем канале. Подписывайтесь!
Все новости
Новые материалы +

Разработана нейросеть для идентификации фейковых лиц на фото и видео

В НИТУ МИСИС создали нейросеть для поиска дипфейков на фото и видео

В Университете МИСИС создали нейросеть для проверки подлинности изображения лиц. Загружать изображения для проверки можно через специально разработанное веб-приложение, также предусмотрена возможность анализа в реальном времени через камеру компьютера, об этом «Газете.Ru» рассказали в НИТУ МИСИС.

В своей работе разработчики опирались на обманы presentation attacks: использование фотографии лиц в печатном и электронном виде, а также объемных масок, имитирующие черты лица человека.

Они проанализировали пять существующих нейросетей, выбрали из них две самые перспективные, и на основе проведенных экспериментов и наблюдений разработали версию, представляющую собой двухступенчатую систему.

«Важным этапом разработки решения с использованием машинного обучения является поиск набора данных для обучения моделей. Мы использовали набор данных из 16 500 изображений: подлинных и фейковых с примерно равномерным распределением по типам обмана систем распознавания лиц: с помощью печатных фотографий и изображений на экранах электронных устройств, масок и персонажей мультфильмов. А также сами напечатали фотографии людей с различными внешними признаками, сделали их «ложные» изображения и добавили в выборку», – пояснила «Газете.Ru» одна из разработчиков Алиса Семенова.

На первом этапе распознавания лица используется предобученная нейронная сеть MTCNN, которая определяет положение лица на картинке. Затем на изображение добавляется специальное поле, 60% от площади которого составляет анализируемое лицо. Такое приближение дает значительный прирост в точности. Далее используется сеть InceptionResnet, дающая числовые представления особенностей лица. На втором этапе используется еще несколько слоев нейронной сети для отбора признаков изображения.

Результаты двух этапов объединяются и проходят через несколько финальных слоев для получения окончательного вывода о подлинности изображения. Этот подход позволил команде достичь высокого значения точности при определении подлинности лиц.

Ранее исследователи научили нейросеть собеседовать менеджеров по продажам.

Загрузка
 
Вкус не тот. Почему замораживать готовую еду на месяцы — не лучшая затея