Газета.Ru в Telegram
Новые комментарии +

Секундное очарование Большого взрыва

На Большом адронном коллайдере получено самое горячее вещество, когда-либо созданное человеком

Вещество, температура которого в 100 000 раз превышала температуру в недрах Солнца, а плотность была больше, чем плотность нейтронных звёзд, было получено в ходе экспериментов на Большом адронном коллайдере. Результаты его изучения доложены на конференции по кварковой материи, проходящей в Вашингтоне.

Физика тяжёлых ионов находится на передовом крае мировой науки и имеет решающее значение для исследования одного из ключевых вопросов естествознания — изучения свойств вещества первичной Вселенной. Помимо недавно обнаруженного бозона Хиггса, на Большом адронном коллайдере (БАК) изучаются и многие другие интересные явления, например, протон-протонные столкновения и столкновения ядер свинца.

Считается, что сразу после Большого взрыва вещество во Вселенной пребывало в особом состоянии и представляло собой горячий космический плазменный «суп» (так называемую «кварк-глюонную плазму»), в котором основные «строительные кирпичики» материи — кварки и глюоны (см. врез) — не находились внутри адронов, как сейчас, а могли свободно перемещаться по всему объёму вещества.<1>

Коллаборации Церна ALICE, ATLAS и CMS провели исследования материи, похожей на ту, которая, согласно современной теоретической физике, существовала в первые мгновения после Большого взрыва.

Для воссоздания и изучения экстремальных условий, которые реализовывались во Вселенной в первые микросекунды её существования, на БАК были проведены эксперименты по изучению столкновений ионов свинца.

Первые эксперименты прошли ещё в ноябре 2010 года, а всего было изучено около миллиарда таких столкновений. На то, чтобы тщательно измерить и зафиксировать полученные результаты у физиков ушло почти два года. Новые результаты были доложены на конференции по кварковой материи, которая в субботу заканчивается в Вашингтоне. Эксперименты проводились на БАК в течение четырех недель в 2011 году, и за это время учёным удалось собрать в 20 раз больше информации, чем в 2010 году<6>

Аналог первичной материи, полученный в ходе экспериментов на БАКе, является самым горячим веществом, когда-либо созданным человеком, ведь температура кварк-глюонной плазмы достигала значений, превышающих 5 триллионов градусов Цельсия.

Это действительно выдающееся достижение, ведь впервые в лабораторных условиях было получено и исследовано вещество, температура которого в 100 000 раз превышала температуру в недрах Солнца, а плотность была больше, чем плотность вещества нейтронных звёзд.

Аналогичного результата добились и американские учёные из Брукхейвенской национальной лаборатории (Нью-Йорк), также участвовавшие в конференции. Варьируя в широком диапазоне физические параметры кварк-глюонной плазмы, получающейся в результате столкновений ионов золота, они создали вещество, температура которого достигала 4 триллионов градусов Цельсия. Теперь американцы собираются выяснить, при каких условиях плазменный кварк-глюонный «суп» превращается в обычное хорошо знакомое нам вещество.

Как заявил руководитель работ Стивен Вигдор, разгадка этой тайны уже не за горами.

Коллаборация ALICE представила на конференции множество новых результатов по всем аспектам эволюции в пространстве и времени сильно взаимодействующей материи высокой плотности. И это только начало, потому что большое количество полученных результатов ещё анализируется, а новые измерения планируется провести в феврале будущего года.

ALICE были проведены исследования так называемых «очарованных частиц», содержащих очарованные кварки или антикварки. Такие кварки, будучи в сто раз тяжелее кварков, из которых составлена обычная материя, сильно тормозятся при пролете сквозь кварк-глюонную плазму, что дает учёным уникальную возможность для изучения их свойств.

Физики из ALICE получили свидетельство того, что поток плазмы настолько силен, что увлекает за собой тяжёлые очарованные частицы. <5>Эксперимент также выявил признаки явления термализации (установления термодинамического равновесия), которое включает в себя рекомбинацию очарованных кварков и антикварков с образованием чармония (одного из видов кваркония) — частицы с так называемым скрытым очарованием, которая состоит из очарованных кварка и антикварка. И это, по словам Паоло Гьюбеллино, представителя группы ALICE, только один из ярких примеров научных возможностей предоставляемых экспериментом ALICE.

Эксперимент CMS представит результаты изучения распада кваркония при взаимодействии с кварк-глюонной плазмой. Эксперимент выявил свидетельства в пользу того, что разные виды кваркония имеют различную энергию внутренней связи. Следовательно, для распада различных частиц требуются разные энергии взаимодействия с первичной материей.

Участники эксперимента ATLAS исследовали гашение струй — явление, при котором высоко энергетический поток частиц сталкивается с плотной кварк-глюонной плазмой, давая учёным детальную информацию о плотности и ряде других свойств образующегося вещества.

Физики объявили на конференции о новых находках в этой области, включая результаты высокоточных измерений процесса фрагментации струй, а также о корреляции между струями и электрослабыми бозонами.

Эти результаты дополняют другие замечательные открытия участников эксперимента ATLAS, в том числе в области изучения течения плазмы.

Представители всех трёх церновских коллабораций собираются продолжать эксперименты и отмечают важность полученных результатов, ведь уже сейчас не только наблюдается феномен кварк-глюонной плазмы, но и проводятся измерения её параметров с помощью различных датчиков. Можно сказать, что человечество вступает в новую эру захватывающих высокоточных лабораторных исследований сильно взаимодействующей материи, которые внесут значительный вклад в наше понимание ранней Вселенной.

Загрузка