На сайте используются cookies. Продолжая использовать сайт, вы принимаете условия
Ok
1 Подписывайтесь на Газету.Ru в MAX Все ключевые события — в нашем канале. Подписывайтесь!
Все новости
Новые материалы +

Математики обучили машину квантовой механике так, что она больше не ошибается

Ученые Сколковского института науки и технологии улучшили алгоритм, позволяющий теоретически предсказывать самую стабильную структуру соединений. Результат был представлен на конференции APS March Meeting 2019 в Бостоне. Исследования поддержаны грантом Российского научного фонда.

Задача поиска новых материалов -– одна из тех, что с каждым годом становятся только актуальнее. До настоящего времени большую часть новых материалов открывали методом проб и ошибок, что обходится достаточно дорого. За последнее время квантовая механика сильно шагнула вперед, и благодаря этому поиск стабильной структуры свелся к написанию программы. Поиск стабильной структуры называют квантово-механическим моделированием, и для вычислений, которые необходимы при этом, используют суперкомпьютеры с очень большой мощностью.

«На квантово-механическое моделирование материалов затрачивается около 30% мощностей современных суперкомпьютеров. Это одна из самых вычислительно сложных и одновременно востребованных задач», – комментирует автор доклада математик Александр Шапеев, кандидат математических наук, старший преподаватель центра по научным и инженерным вычислительным технологиям для задач с большими массивами данных Сколковского института науки и технологий.

Для того чтобы понять, насколько стабильно соединение, нужно рассчитать энергию каждого атома. Основной метод, который представили в семидесятых годах и используют по сей день, – теория функционала плотности (в англоязычных источниках Density Functional Theory, DFT). Он хорош тем, что позволяет рассчитывать энергию системы с большим количеством атомов, для которой невозможно решить уравнение Шредингера. Соединение представляют как множество взаимодействующих друг с другом электронов, которые удерживает решетка из атомных ядер. Главная особенность метода заключается в том, что для определения состояния системы не нужно учитывать каждый отдельно взятый электрон – многоэлектронную волновую функцию заменяют электронной плотностью. Такая замена делает уравнение Шредингера решаемым. Результаты, которые получают в результате DFT, довольно точные, но расчет больших структур может занимать много времени, вплоть до нескольких месяцев.

Решением стало использование машинного обучения, которое позволяет получить результат гораздо быстрее. В случае метода DFT необходимо предоставить компьютеру 100 000 разных структур, из которых он будет получать самую стабильную. При машинном обучении достаточно знать ответ для 1000 соединений, а для остальных 99 000 машина все вычислит сама. Однако из-за того, что все соединения немного различаются, в результате появляется ошибка: соединение, найденное машинным обучением, может быть менее стабильным, чем полученное методом DFT. То есть на ответ, полученный машинным обучением, можно опираться только приблизительно.

Проблему этой неточности решил Александр Шапеев. Идея в том, чтобы относиться к результату, полученному машинным обучением, не как к конечному ответу. С его помощью можно оценить, насколько велика вероятность того, что найденная структура — нужная. Ответ, который дает машинное обучение, «досчитывается» методом DFT. То есть все еще необходимо рассчитывать 1000 структур методом DFT, и так же, как и при обычном машинном обучении, остальные 99000 машина оценит сама. В конце вместо того, чтобы принять ответ за окончательный, берут еще 1000 самых стабильных структур и «досчитывают» их методом DFT. Таким образом, результат получается настолько же точным, как при «чистом» DFT, и тем не менее на порядки более быстрым. Иными словами, машинное обучение проводит предварительный отбор структур и так добавляется еще один этап в конкурсе на лучшую структуру. «Долгие расчеты – один из главных барьеров на пути к мечте инженеров проектировать материалы на компьютере одновременно с дизайном изделий. Возьмем, например, процесс изготовления автомобилей. На сегодняшний день машины делают так: дизайнеры проектируют конструкцию, а инженеры собирают ее из уже готовых материалов, которые придумали много лет назад. Придумывать новые сплавы долго, поэтому используют старые, проверенные временем, пусть даже не оптимальные. Мечта инженера – возможность теоретического поиска лучшего сплава для заданного изделия. Представьте, насколько было бы лучше не тратить годы в лаборатории, а просто взять и рассчитать сплав одновременно с дизайном конструкции. Наше исследование – шаг на пути к этой мечте», – говорит Александр Шапеев.

Новости и материалы
Россиянин откусил сопернику ухо и ударил его ножом из-за девушки
«Не надо форсировать»: хореограф Авербух о возвращении Валиевой на соревнования
Обвиняемый по делу о коррупции в московском метро признал вину
Дело возбудили после задержания со стрельбой водителя Porsche в Подмосковье
В Киеве ограничили использование наружного освещения на неопределенное время
Москвичка рассказала, что ее детей в больнице заразили ротавирусом и корью
OnlyFans-модель предложила заняться с ней сексом всем футболистам «Манчестер Юнайтед»
Рената Литвинова снялась в образе Примадонны в Париже
Netflix получит эксклюзивные права на показ фильмов Sony
18-летний подражатель саутпортского преступника планировал теракты на концерте Oasis
Украинская делегация вылетела в США на переговоры
Названы самые модные цвета 2026 года по версии Pinterest
В Австрии судят психопата, который бросал в женщин фекалии со шприцами внутри
На Украине чиновник присвоил $1,3 млн на закупках бракованных очков для ВСУ
18-летняя россиянка пыталась поджечь призывной пункт после общения с мошенниками
Спецпосланник США заявил о необходимости заключить сделку по Гренландии
«Червячок внутри»: 37-летний Дзюба раскрыл мотивацию продолжать карьеру
На Западе заявили об успешном подавлении протестов в Иране
Все новости
Как делить деньги в семье, чтобы не разругаться: 4 рабочих модели бюджета
Теперь вы знаете